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Abstract

A numerical algorithm for acoustic noise predictions based on solving Lilley’s third order wave equation
in the time–space domain is developed for a subsonic axisymmetric jet. The sound field is simulated
simultaneously with the source field calculation, which is based on a direct solution of the compressible
Navier–Stokes equations. The computational domain includes both the nearfield and a portion of the
acoustic farfield. In the simulation, the detailed sound source structure is provided by the nearfield direct
numerical simulation (DNS), while the sound field is obtained from both the DNS and the numerical
solution to the non-linear Lilley’s equation. The source terms of Lilley’s equation are used to identify the
apparent sound source locations in the idealized axisymmetric low-Reynolds number jet. The sound field is
mainly discussed in terms of instantaneous pressure fluctuations, frequency spectra, acoustic intensity and
directivity. A good agreement is found between the predictions from the axisymmetric Lilley’s equation and
the DNS results for the sound field. Limitations and perspectives of the simulation are also discussed.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Sound generation by aerodynamic processes, such as jets, wakes and boundary layers, is of
great importance to many applications. Traditionally, aeroacoustic noise predictions relied
primarily on qualitative theoretical calculations and experimental observations. Most of the
theoretical calculations were carried out using the acoustic analogy introduced by Lighthill [1].
Due to the difficulties in getting detailed information on the sound source, accurate quantitative
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predictions were hard to achieve. Small errors in the source terms could lead to very large errors in
the acoustic prediction.
Lilley [2], among others, tried to improve the acoustic analogy by developing higher order wave

equations. Lilley’s equation was anticipated to improve the sound predictions by reducing the
cancellation effects in the source terms and especially to improve predictions of the high-
frequency sound wave scattering and refraction. Goldstein [3] reviewed the theoretical
calculations based on Lilley’s equation, which primarily focused on solutions in the high- and
low-frequency limits. It was pointed out that certain jet noise features were well explained by
solutions of Lilley’s equation, such as the enhanced directionality (over predictions based on
Lighthill’s equation), and the zone of silence along the downstream axis for high frequencies.
There were also a few recent theoretical calculations of noise generation by using the solutions to
Lilley’s equation, e.g., Refs. [4–6].
In recent years, computational aeroacoustics (CAA) has been developing rapidly due to the

significant advancement on both computer power and numerical methods. Particularly, direct
numerical simulations (DNS) provide detailed information on the source flow field, and therefore
provide a possibility to yield more fundamental knowledge about the sound generation process. A
direct CAA approach is to simulate the source field and sound field with the same methods. This
approach was found successful for Mach wave generation by supersonic shear flows, e.g., Mitchell
et al. [7] and Avital et al. [8]. This is mainly because of the relatively small differences between the
source field and sound field in the energy level and dominant length scale.
Computational aeroacoustics of low subsonic jets is particularly difficult, mainly because of the

very small energy of the acoustic field relative to the flow field. A useful approach for aeroacoustic
predictions of subsonic jets is to compute the nearfield hydrodynamic region by solving Navier–
Stokes equations, and then use an acoustic analogy to determine the farfield sound. The acoustic
analogy equation and particularly its Green’s function solution were identified by many as a good
way to calculate the sound in this approach. However, applications of this method are limited by
the numerical constraints and the cancellation effects in the source terms due to retarded-time
variation [9]. Green’s function method also requires linearization of the acoustic analogy
equation, which takes the non-linear propagation terms as sources. This linearization, however,
could result in a deterioration of the numerical accuracy.
Recently, Colonius et al. [10] used DNS to compute the acoustic field of a two-dimensional

planar mixing layer and compared the results with acoustic predictions from Lilley’s equation. In
their work, the linearized Lilley’s equation was solved in the frequency–space domain. Because the
Fourier transform in time was used, only the sound that was produced after a periodic state had
been reached was considered. To the best of the authors’ knowledge, a numerical solution in the
time–space domain of Lilley’s equation has never been attempted.
The main objective of this study is to develop a numerical algorithm for jet noise predictions

based on solving Lilley’s equation in the time–space domain. An idealized axisymmetric low-
Reynolds number jet has been investigated. The sound field is simulated simultaneously with the
source field DNS, by using a time-marching technique. In this way the retarded-time variation can
easily be accounted for. In order to validate the acoustic solver, the same computational domain is
used for the acoustic analogy approach based on Lilley’s equation and the DNS. The acoustic
field is discussed in terms of the instantaneous sound field and the aeroacoustic properties such as
frequency spectra, acoustic intensity and directivity.
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2. Mathematical formulation

A cold jet without significant temperature variation is considered. The physical problem is
similar to that of Mitchell et al. [11], in which the sound generated by vortex pairing was studied.
To ease the high computational burden of computing the jet near and farfields together, only the
axisymmetric case is considered. Although axisymmetric jets differ from fully three-dimensional
turbulent jets, useful physical insights can be garnered from the consideration of this type of
‘‘building block’’ flows [11]. In the following, the governing equations used in the DNS and the
third order axisymmetric Lilley’s equation for the acoustic analogy are presented.

2.1. The flow equations

The flow field is described with the compressible time-dependent Navier–Stokes equations. The
physical space is spanned by a cylindrical co-ordinate system ðx; r; yÞ; where x is along the jet axis.
In this work, the non-dimensional form of the governing equations is employed. Major reference
quantities used in the normalization are the initial centerline velocity and jet radius. The non-
dimensional quantities are: x; streamwise distance; r; radial distance; ux; streamwise velocity; ur;
radial velocity; c; sonic speed; e; internal energy per unit mass; ET ¼ r½e þ ðu2x þ u2

r Þ=2�; total
energy; M; Mach number based on the initial centerline velocity; p; pressure; Re; Reynolds
number; t; time; T ; temperature; g; ratio of specific heats, m; dynamic viscosity; and r; density.
The conservation laws for mass, momentum and energy can be written in the following form:
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For the axisymmetric jet, it is preferable to include the centerline into the mathematical
formulation. This has the advantage of applying the symmetry conditions precisely. At the
centerline, a new set of equations is derived from the original equations by using l’H #opital’s rule to
circumvent the singularity in the formulation [12].
The flow equations also include the perfect gas law, which is given by

p ¼
rT

gM2
: ð2Þ
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2.2. The acoustic analogy equation

Lilley’s equation [2] can be obtained by combining the equations describing conservation of
mass and momentum for compressible flow. For the application of Lilley’s equation, the usual
approach was to linearize it about a time-independent parallel base flow [3–6,10]. This
linearization, however, could blur the distinction between the propagation and source terms
[13]. To avoid the ambiguity associated with the linearization, the non-linearized Lilley’s equation
is adopted in this study.
In the derivation of Lilley’s equation, it is convenient to define a logarithmic pressure variable

P ¼ ln
p

p0
; ð3Þ

where p0 ¼ 1=ðgM2Þ is the ambient pressure. Assuming a constant sonic speed for the cold jet, the
axisymmetric Lilley’s equation in cylindrical co-ordinates can be derived as
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where D=Dt ¼ @=@t þ ui@=@xi is the convective derivative. For an axisymmetric flow, D=Dt ¼
@=@t þ ux@=@x þ ur@=@r; while the other terms in Eq. (4) can be expressed as
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In Eq. (4), the left-hand side is considered to be the wave operator which contains the pressure
variableP; while the right-hand side is taken as the sound source. By applying l’H #opital’s rule, the
singularity of Eq. (4) at r ¼ 0 can also be circumvented.

3. Numerical implementation

The computational domain includes both the nearfield and a significant portion of the acoustic
farfield. The dimensions of the computational domain are 0pxpLx and 0prpLr: In the axial
direction, a sponge layer LxpoxpLx is used to prevent the spurious wave reflections from the
outflow boundary [12]. A grid uniformly spaced in the x direction and non-equally spaced in the r
direction is used. The mapped grid in the radial direction is employed to resolve the jet nearfield
flow structure and farfield sound more efficiently [14]. To avoid the risk of the numerical
discretization distorting the sound field, high-order numerical methods and the appropriate
boundary conditions are used for the DNS and Lilley’s acoustic analogy equation.
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3.1. Numerical methods for the DNS

In the DNS, the spatial differentiation of the governing equations is performed using a sixth
order accurate compact (Pad!e) finite difference scheme with spectral-like resolution [15], which is
of sixth order at inner points, fourth order at the next to boundary points and third order at the
boundary. At the jet centerline r ¼ 0; the formal sixth order accuracy of the numerical scheme is
preserved by applying the symmetry conditions [12]. The time-dependent governing equations are
integrated forward in time using a third order compact-storage fully explicit Runge–Kutta scheme
[16] of the family derived by Wray [17].
The computational box is bounded by the inflow, outflow boundaries in the streamwise

direction, the far side boundary in the radial direction, and the symmetry boundary at the jet
centerline. Non-reflecting characteristic boundary conditions [18] are used at the inflow, outflow,
and the far side radial boundaries. The symmetry conditions are applied at the jet centerline
without additional characteristic boundary conditions. For the outflow boundary, it was found
necessary to use a sponge layer [12] next to the boundary to control spurious wave reflections.
Using a sponge layer is similar to a ‘‘sponge region’’ or ‘‘exit zone’’ at the end of the domain
[7,10,11,19]. The results in the sponge layer are not truly physical and therefore are not used in the
data analysis.
A hyperbolic tangent mean velocity profile is specified at the inlet x ¼ 0; which is given by

%ux ¼ 1
2

U0 1� tanh
R0

4d2

r

R0
�

R0

r


 �� �� �
; ð8Þ

where a tiny value 10�9 of r is used at the jet centerline instead of a zero value. Here U0 stands for
the maximum velocity at the inlet and d2 ¼ 0:1R0 is chosen as the initial momentum thickness [20].
The flow field is initiated with this longitudinal velocity profile, while the initial radial velocity is
taken as zero. Initially, the pressure field is assumed to be uniform.
At the inflow boundary, the flow is perturbed to induce the roll-up and pairing of vortex rings

[21]. The frequencies chosen for the perturbation are the most unstable mode f0 and its first two
leading subharmonics, f0=2 and f0=4: For the velocity profile given by Eq. (8) with d2 ¼ 0:1R0; the
non-dimensional fundamental frequency used in the simulation is the same as that of Mitchell
et al. [11], which is f0R0=U0 ¼ 0:218:

3.2. Numerical solution of Lilley’s equation

For the numerical solution of Eq. (4), it is convenient to define
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: ð9Þ

The combination of the above definitions and Eq. (4), results in
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The spatial differentiation in Eqs. (10)–(12) is also performed by the sixth order compact finite
difference scheme. Eqs. (10)–(12) are time-marched with additional artificial numerical damping
terms. The time-marching is performed by the Runge–Kutta scheme as is that for the DNS. As
other commonly used CAA schemes to solve the aeroacoustic equations in time [14,22], artificial
numerical viscosity has to be added and an explicit term has been chosen to suppress the high
wavenumber numerical instability in the time-marching of Eqs. (10) to (12). The addition of
damping terms helps to stabilize the solution. That is, a solution at large step sizes may be
obtained which otherwise would have been unstable. In this study, a second order damping in the
form of er2Pi has been added explicitly to the right-hand side of Eqs. (10) to (12) with i ¼ 1; 2; 3;
respectively, where e is the damping coefficient. To reduce the adverse effects of damping on the
solution accuracy, the damping coefficient has been kept to a minimum value by numerical tests.
In the simulation, keeping the resolution high relative to the dominant sound wavelengths
emitted by the jet, meant that the effect of artificial viscosity on these sound waves was
negligible. This was confirmed by the good agreement achieved with the DNS which has a
physical viscous term.
The initial values of P1; P2; and P3 are taken as zero, corresponding to the initial conditions

for the flow field of the DNS. The first order wave equations are used as the boundary conditions
for the axisymmetric Lilley’s equation, which were found to be sufficient for the case studied.

4. Numerical results and discussion

In the simulation, the considered jet Mach number is M ¼ 0:4; which is based on the initial
centerline velocity. The Reynolds number based on the nozzle radius is Re ¼ 2500: The ratio of
specific heats used is g ¼ 1:4: The dimensions of the computational box used are Lx ¼ 85R0 with
Lxp ¼ 70R0; and Lr ¼ 80R0: The grid system used is of 1701	 570 nodes. The time step is limited
by the Courant–Friedrichs–Lewy (CFL) condition for stability. A CFL number of 2.0 is used. In
this study, grid and time-step independence tests have been performed. The results presented next
are considered to be grid and time-step independent.

4.1. The nearfield flow and sound source structures

Fig. 1 shows the time traces of the jet centerline velocity for different streamwise locations. At
the inflow location x ¼ 0; variation of the streamwise velocity is due to the applied perturbation.
It is observed that the start-up transient arrives at points downstream at progressively later times.
The growth of the external perturbation is evident. The jet acts as an amplifier for the disturbance
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to which it is subjected. Under the effects of external disturbance with the preferred frequency, the
velocity variation grows rapidly, subsequently saturates and then decays downstream. This trend
is consistent with that observed experimentally by Crow and Champagne [23]. The histories of the
centerline streamwise velocity shown also indicate that the jet downstream centerline velocity is
dominated by the first subharmonic frequency. This is because only one vortex pairing appeared
in the flow field for the flow conditions investigated [11]. The jet reaches a periodic steady state
approximately after time t ¼ 120U0=R0:
An advantage offered by DNS as a tool of CAA is that it yields the complete flow field and the

exact structure of the sound source. Fig. 2 shows the nearfield vorticity and sound source
structures at t ¼ 200 of the axisymmetric jet after the periodic state has been reached. From
Fig. 2(a), it is observed that the axisymmetric jet has a highly organized extensive vorticity field.
Vortex roll up and pairing can be clearly seen. Fig. 2(b) shows the sound source structure
corresponding to the vorticity shown in Fig. 2(a). The quantity shown is the summation of the
right-hand side of Eq. (4). Apparently the sound source locations correspond to the flow regions
with intense vorticity. This indicates that the large-scale vortical structures play an important part
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Fig. 1. Time traces of the streamwise velocity at r ¼ 0 for different streamwise locations (..........., x ¼ 0; - - - - -,
x ¼ 30:0; ——, x ¼ 60:0).

Fig. 2. The nearfield (a) vorticity structure and (b) sound source structure at t ¼ 200 of the axisymmetric jet

(15 contours between the minimum and maximum).
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in the generation of jet noise. Fig. 2 also shows that there is no apparent sound source at the jet
upstream locations near the inflow boundary.
For the sake of clarity, the instantaneous profiles of the sound source at r ¼ 1:25 within the jet

shear layer during one period of the second subharmonic frequency are shown in Fig. 3. The
instantaneous sound source terms have both positive and negative values. The intense sound
source corresponds to the vortex pairing location at each individual time. Downstream, the sound
source gradually becomes smaller. Due to the periodic perturbation applied at the inflow
boundary, the spatially developing axisymmetric jet approaches a periodic state after the initial
stage. The periodicity of the jet flow is evident in the comparison between the sound source
profiles shown in Fig. 3(a) for t ¼ 200:0 and Fig. 3(d) for t ¼ 218:3; which are very similar in
structure. From Fig. 3, it is evident that the sound source comes from the end of the jet potential
core and not from the forcing applied at the inflow boundary. The sound source develops
downstream of the jet potential core. This implies that it is the vortex pairing but not the inflow
forcing which leads to sound generation in this axisymmetric jet.
In order to check the usual assumption of a time-independent parallel base flow made for the jet

when the acoustic analogy was applied to jet noise calculations [3–6,10], Fig. 4(a) shows the time-
averaged streamwise velocity contours of the axisymmetric jet from the DNS. The time interval
used for the averaging is between t1 ¼ 140:0 to t2 ¼ 213:4: It is obvious that the mean flow can be
roughly considered to be parallel only after the streamwise location of x ¼ 15:0 where the vortex
pairing occurs. Before this location, the mean flow spreads significantly in the radial direction due
to the initial growth of the shear layer that invalidates the parallel mean flow assumption. This,
however, does not cause any problems in the acoustic modelling performed here since the non-
linearized Lilley’s equation is adopted in this study through which the jet spreading effects can be
taken into account.
Laufer and Yen [24] investigated the noise generation by a low-Mach-number round jet. They

suggested that the acoustic sources were located within a confined volume and they were
associated with the non-linear saturation of the unstable wave amplitudes of the shear layer
occurring at the vortex pairing locations. To examine the statistics of the sound source
distribution, contours of the root-mean-square (r.m.s.) of the sound source fluctuation are shown
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Fig. 3. Profiles of the instantaneous sound source at r ¼ 1:25 during one period of the second subharmonic frequency:

(a) t ¼ 200:0; (b) t ¼ 206:1; (c) t ¼ 212:2; and (d) t ¼ 218:3:

X. Jiang et al. / Journal of Sound and Vibration 270 (2004) 525–538532



in Fig. 4(b). The r.m.s. of the fluctuation of a quantity j is calculated as ðj02Þ1=2 ¼ ðj2 � %j2Þ1=2:
Here, the quantity examined is the right-hand side of Eq. (4). It can be seen that the intense
sound source is located near the end of the jet potential core. The acoustic source has a large
spatial distribution in the streamwise flow direction. The long length of the source and its
stationary position relative to the jet potential core agree qualitatively well with the experimental
observation [24].

4.2. Sound predictions from the DNS and Lilley’s equation

The sound field of the axisymmetric jet is predicted by both the DNS and the solution of Lilley’s
equation. Figs. 5 and 6 show the farfield sound predictions from the DNS and the solution of
Lilley’s equation, respectively. In these figures, the pressure fluctuation contours during one
period of the second subharmonic frequency are shown. It can be observed that the propagating
acoustic field produced by the vortex pairing is highly directive, sound being primarily beamed
downstream with a strong dependence on the angle from the jet axis. The formation of the sound
beams is mainly because of the discrete sound source structure. The sound field predictions from
Lilley’s equation show a similar pattern to those from the DNS. The sound waves are mainly
beamed downstream along the jet axis. This can be attributed to the long axial length of the
source, leading to a highly directive or superdirective sound field [25]. The sound wavelength is
about 8R0 from Figs. 5 and 6, while the source length is a factor of three to four times greater than
the wavelength. This should lead to a superdirective sound field by the calculation of Avital and
Sandham [26] for this Mach number.
A comparison of the time traces and frequency spectra of the pressure fluctuations at ðx ¼

60; r ¼ 60Þ between the DNS and the solution of Lilley’s equation is shown in Fig. 7. It is evident
that only the inflow forcing frequencies are present. There is no obvious spectrum broadening and
observable Doppler shift in frequency. This could be due to the axisymmetric nature of the
simulation and the stationary position of the source. In an axisymmetric simulation, higher
frequency turbulence could not develop which would have been developed in a fully
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Fig. 4. (a) Time-averaged streamwise velocity and (b) the r.m.s. of the sound source fluctuation (15 contours between

the minimum and maximum).
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three-dimensional turbulent jet. It is also noticed that the frequency spectra obtained from the
DNS and the solution of Lilley’s equation are in good agreement.
There are several expressions describing the energy in acoustic fields. One of these is the mean

acoustic intensity, which is the mean rate of flow of energy per unit area due to the acoustic
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Fig. 6. The farfield sound prediction from Lilley’s equation: pressure fluctuations during one period of the second

subharmonic frequency (15 contours between the minimum and maximum): (a) t ¼ 200:0; (b) t ¼ 206:1; (c) t ¼ 212:2;
and (d) t ¼ 218:3:

Fig. 5. The farfield sound prediction from the DNS: pressure fluctuations during one period of the second subharmonic

frequency (15 contours between the minimum and maximum): (a) t ¼ 200:0; (b) t ¼ 206:1; (c) t ¼ 212:2; and

(d) t ¼ 218:3:
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disturbances. It can be defined in terms of the mean square pressure fluctuation [27] as

%IE
1

ðt2 � t1Þ

Z t2

t1

p
02

r0c
dt; ð13Þ

where r0 is the ambient density and c is the sonic speed. Based on the mean acoustic intensity, the
total mean acoustic power output (the surface integral of the mean intensity) at a radial location r

for an axisymmetric jet can be expressed as

%P ¼ 2pr

Z
N

�N

%I dx: ð14Þ

For the description of the acoustic field, the directivity of the farfield sound pressure is a useful
quantity. It is a measure of the directional characteristic of a sound source. For the sound field of
the axisymmetric jet, the total mean acoustic power output can also be expressed in terms of the
acoustic directivity as

%P ¼
Z p

0

DðYÞ sinY dY; ð15Þ

where DðYÞ is the directivity, Y is the spherical angle and Y ¼ 0 points to the positive axial
direction (jet downstream) whileY ¼ p points to the negative axial direction (jet upstream). In the
above definition, it is assumed that the sound source is on the symmetry axis. Based on Eqs. (14)
and (15), the directivity of the sound field at a radial location r for the axisymmetric jet can be
given by

DðYÞ ¼
%Ir2

sin3 Y
: ð16Þ

Fig. 8 shows the comparison of the sound field directivity distributions between the DNS and
the solution of Lilley’s equation at three different radial locations. The directivity in this figure is
expressed in a logarithmic scale given by 10 log10 DðYÞ: The apparent sound source location is
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Fig. 7. Comparison of the time traces and frequency spectra of the pressure fluctuations at ðx ¼ 60; r ¼ 60Þ between the

DNS and the solution of Lilley’s equation: (a) p0 history from DNS, (b) Fourier spectrum from DNS, (c) p0 history from

Lilley’s equation, and (d) Fourier spectrum from Lilley’s equation.
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taken as x ¼ 15R0 on the jet axis. It is observed that the sound radiation at lower angles (closer to
the jet axis) is generally stronger than that at higher angles (away from the axis). The sound is
mainly concentrated at shallow angles to the jet’s downstream axis, as that observed from the
contour plots shown in Figs. 5 and 6. At the radial location of r ¼ 30; the lowest sound radiation
occurs at an angle of Y ¼ 55�–60�: This dip disappears at r ¼ 50 and reappears at r ¼ 70;
indicating a complex sound field. The predictions from the DNS and Lilley’s equation are in a fair
agreement. It should be noted that aerodynamic noise computation of low-Mach number flows is
susceptible to numerical errors [28] and thus such agreement is expected.

5. Conclusions and perspectives

A subsonic axisymmetric jet of Mach number 0.4 has been simulated. The sound generated by
vortex pairing in this idealized axisymmetric low-Reynolds number jet is investigated by DNS and
the acoustic analogy based on Lilley’s equation. The insights obtained from the current
axisymmetric flow configuration can aid the understanding and prediction of jet noise under more
complex practical conditions. The nearfield DNS results show that the sound source locations
correspond to the flow regions with intense vorticity. The strongest sound source is located in the
region where the vortex pairing takes place. It is also shown that the acoustic source has a long
downstream distribution. Both the DNS and numerical solution of Lilley’s equation are used to
predict the sound field. The results show that the acoustic field produced by the vortex pairing is
highly directive. This superdirectivity of the sound field has been associated with the long length
of the source and is in good agreement with previous analytical, experimental and numerical
studies.
For the farfield sound prediction, the axisymmetric Lilley’s equation is solved in the time-space

domain for the first time. The non-linearized Lilley’s equation is employed to avoid the ambiguity
associated with the linearization. In this way the distinction between the propagation and source
terms is made clear. Numerical solution method for the third order Lilley’s equation is developed
together with appropriate boundary conditions. A detailed comparison between sound
predictions from Lilley’s equation and DNS has been made. The good agreement between the
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Fig. 8. Comparison of the sound field directivity distributions between (a) the DNS and (b) the solution of Lilley’s

equation (——, r ¼ 30; ........., r ¼ 50; - - - - -, r ¼ 70).
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sound predictions from the DNS and Lilley’s equation indicates the efficacy of the solution
method.
The acoustic analogy based on Lilley’s equation together with the solution method can be a

useful tool in jet noise predictions. To reduce the high computational costs, a useful CAA
approach for subsonic jets is to compute the nearfield hydrodynamic region with the DNS in a
relatively small computational box in the radial direction, and use an acoustic analogy to
determine the farfield sound in a relatively large domain that includes the acoustic farfield. This
approach provides a possibility to perform parametric studies to elucidate the sound generation
and propagation mechanisms in subsonic jets and should be considered in the future
investigations. Moreover, fully three-dimensional turbulent jets should be considered based on
the methodology developed from the current axisymmetric flow configuration.
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